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We give an alternative proof of a useful formula for calculating the probability density function
of the product of n uniform, independently and identically distributed random variables. Ishihara
(2002, in Japanese) proves the result by induction; here we use Fourier analysis and contour integral
methods which provide a more intuitive explanation of how the convolution theorem acts in this
case.

To obtain the probability density function (PDF) of the product of two continuous random variables (r.v.) one
can take the convolution of their logarithms. This is explained for example by Rohatgi (1976). It is possible to use
this repeatedly to obtain the PDF of a product of multiple but fixed number (n > 2) of random variables. This is
however a very lengthy process, even when dealing with uniform distributions supported on the interval [a, b]. We
encountered the latter problem with a = 1

3 and b = 3, in the article by Armstead et al. (2004) on the approximation
for the open-ended stadium billiard dynamical system; there are undoubtedly other applications in a variety of fields.
A formula for calculating the PDF of the product of n uniform independently and identically distributed random
variables on the interval [0, 1] first appeared in Springer’s book (1979) on “The algebra of random variables”. This
was then generalized (see Ishihara 2002 (in Japanese)) to accommodate for independent but not identically (i.e.
{[ai, bi], i = 1, 2, . . . n}) distributed uniform random variables through the use of the proof by induction. In the
current paper we use Fourier analysis, as suggested by Springer, to re-derive a subset of Ishihara’s results: the PDF
of a product of n independent and identically distributed uniform [a, b] random variables. Through this analysis one
can see exactly how the n smooth components of the resulting PDF arise from contour integrals in Fourier space and
thus obtain a more intuitive idea of how the convolution theorem (see Bracewell, 2000) acts. Specifically, we shall
show that the convergence of the contour integrals defines the supports of the components of the PDF.

Theorem 1. Let Xi be independent random variables with PDF fXi(x) = 1
b−a on the interval x ∈ [a, b] and 0

otherwise, where 0 ≤ a < b < ∞ and i = 1, 2, . . . n, n ≥ 2. Then the PDF of X =
∏n
i=1Xi is given by the piecewise

smooth function:

fX(x) =


fkX(x), an−k+1bk−1 ≤ x ≤ an−kbk,

k = 1, 2, . . . n,
0, otherwise,

where

fkX(x) =
n−k∑
j=0

(−1)j

(b− a)n(n− 1)!

(
n

j

)(
ln
bn−jaj

x

)n−1

.

Remark 1. It is interesting to note that the components’ derivatives ( dl

dxl
fkX(x)), of order l = 1, 2, . . . (n − 2), are

continuous at their end-points while the (n− 1)th derivative is not (see Springer 1979).

Remark 2. The known result that lnX = ln
∏n
i=1Xi =

∑n
i=1 lnXi is Gamma distributed (∼ −Γ(n, 1)), as explained

by Devroye, (1986), is only valid for a = 0, with the natural normalization b = 1. Unfortunately, we can not find a
representation in terms of standard distributions if a > 0. We can however comment that according to the Central
Limit Theorem (CLT), the distribution of lnX converges asymptotically to the Normal distribution. In fact, since the
third central moment of lnXi exists and is finite, then by the Berry-Essen theorem (see Feller 1972), the convergence
is uniform and the the convergence rate is at least of the order of 1/

√
n; this can be used to approximate fX(x) for

large n where direct numerical computation is inefficient.

Proof. Let Yi = lnXi. Then the PDF of Yi is fYi(y) = 1
b−ae

y = κey supported on y ∈ (ln a, ln b) and is zero otherwise.
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We find the characteristic function by taking the Fourier transform of fYi(y):

F(fYi(y))(η) = E(eiηYi) = f̂Yi(η) =
∫ ∞
−∞

κeyeiηydy,

=
κ

(1 + iη)

(
beiη ln b − aeiη ln a

)
. (1)

The convolution theorem (see Bracewell, 2000) states that the characteristic function (c.f.) of the sum of n random
variables is given by the product of the individual c.f. of each r.v. Hence, the c.f. of Y =

∑n
i=1 Yi is given by the nth

power of f̂Yi(η) which we expand here using the binomial theorem:

[f̂Yi(η)]n = f̂Y (η) =
n∑
j=0

κn(−1)j

(1 + iη)n

(
n

j

)
b(n−j)ajeiηλj (2)

where λj = (n− j) ln b+ j ln a. To perform the inverse Fourier transform we shall use Cauchy’s residue theorem (see
Knopp, 1996). Note that according to Springer (1979), we should expect n piecewise continuous components which
make up a Cn−2 curve. Also note that the inverse Fourier transform of equation (2), F−1

(
[f̂Yi(η)]n

)
(y), will have

support only in the interval (n ln a, n ln b).

F−1
(
[f̂Yi(η)]n

)
(y) =

1
2π

∫ ∞
−∞

f̂Y (η)e−iηy dη

=
∫ ∞
−∞

n∑
j=0

κn(−1)j
(
n
j

)
b(n−j)ajeiη(λj−y)

2π(η − i)n(i)n
dη

≡
∫ ∞
−∞

n∑
j=0

hj(η, y) dη, (3)

where the integral-sum order can be interchanged. We define two contours γm (m = 1, 2.) such that γ1 goes along
the real axis from −R to R and then into the upper complex plane along an anti-clockwise semicircular arc of radius
R > 1, centered at the origin, γc1 ⊂ γ1. Contour γ2 is defined similarly but into the lower complex plane along a
clockwise semicircular arc of radius R, γc2 ⊂ γ2. Notice that for all j there is only one pole due to hj(η, y) enclosed
by γ1, that it is of order n, that it is situated at η0 = i and that there are no poles in γ2. We use the residue theorem
to calculate: ∮

γ1

hj(η, y) dη = 2πiRes
(
hj(η, y), i

)
=

(κ)n(−1)j

(n− 1)!

(
n

j

)(
λj − y

)(n−1)
ey. (4)

The choice of contour to be used for every 0 ≤ j ≤ n and y ∈ (n ln a, n ln b) when calculating (3) depends on the
sign of the exponential. In other words, m depends on both j and y. Explicitly, we write η = R(cosφ + i sinφ) and
estimate the integrals over the semicircular arcs γc1 and γc2 :∫

γcm

hj(η, y)dη =
∫
γcm

g(R,φ)e−R sinφ(λj−y)dφ, (5)

where g(R,φ) = O(R−n+1), as R → ∞. For n ≥ 2 we know that if the exponent: −R sinφ(λj − y) ≤ 0, then the
integrals in (5) will converge to zero. We rearrange this inequality to find that for γ1 we need j ≤ j∗(y) while for γ2

we need j > j∗(y), where j∗(y) =
⌊
n ln b−y
ln b−ln a

⌋
and b.c denotes the floor function. Note that when λj = y, both contour

integrals (along γc1 and γc2) converge and we see that (4) is identically zero. Hence we obtain the following equation:

fY (y) =
n∑
j=0

∫ ∞
−∞

hj(η, y) dη

=
j∗(y)∑
j=0

(∮
γ1

hj(η, y) dη −
∫
γc1

hj(η, y) dη
)

+
n∑

j=j∗(y)+1

(∮
γ2

hj(η, y) dη −
∫
γc2

hj(η, y) dη
)

(6)
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as R→∞, where all integrals along γc1 , γ2 and γc2 vanish and the remaining integral is given by (4). Note that the
sums in (6) only make sense if 0 ≤ j∗(y) < n; as expected from the known support of y. We find n intervals on which
fY (y) is supported and number them by k = 1, 2, . . . n, where k = n− j∗(y). To obtain fX(x), as given in Theorem
1., simply transform back to X = exp(Y ).

Remark 3. It is an interesting exercise to show that
∑n
j=0

( ∮
γm
hj(η, y) dη

)
= 0 for both m = 1 and m = 2 and for

any y as R → ∞. To see this for m = 1, expand (λj − y)(n−1) using the binomial theorem, collect the j-dependent
terms and interchange the sums to obtain:

n∑
j=0

(∮
γ1

hj(η, y) dη
)

=

n−1∑
l=0

(κ)n
(

ln a
b

)l
ey

(n− 1)!(i)n−1

(
n− 1
l

)(
n ln b− y

)n−1−l

×
n∑
j=0

(−1)j
(
n

j

)
jl.

To show that the last sum over j is zero, we write it as:

n∑
j=0

(−1)j
(
n

j

)
jlels

∣∣∣∣
s=0

=
dl

dsl

n∑
j=0

(−1)j
(
n

j

)
els
∣∣∣∣
s=0

=
dl

dsl
(
1− es

)n∣∣∣∣
s=0

= 0,

for all 0 ≤ l ≤ (n− 1). For m = 2, the contour integral is zero as there are no poles enclosed by the contour.

Remark 4. To prove Ishihara’s general result (where the Xi’s are not identically distributed), one would have to

expand the product
∏n
j=1

(bje
iη ln bj−ajeiη ln aj )

(bj−aj) and evaluate the (n − 1)th derivative at η = i, and then look at the
various contour integrals as above. While possible in principle, this would defeat the purpose of this paper, namely a
simpler but more explicit and intuitive derivation of the result.
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